Full Text

Turn on search term navigation

© 2025 Patel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

To assess patient characteristics and care factors that are associated with correct and incorrect predictions of future care locations (ICU vs. non-ICU) by the Criticality Index-Dynamic (CI-D), with the goal of enhancing the CI-D.

Design

Retrospective structured chart review

Participants

All pediatric inpatients admitted from January` 1st 2018 – February 29th 2020

through the emergency department.

Main outcome(s) and measure(s)

Patient characteristics and care factors associated with correct (true positives, true negatives) and incorrect predictions (false positives, false negatives) of future care locations (ICU vs. non-ICU) by the CI-D were assessed.

Results

Of the 3,018, patients, 139 transitioned from non-ICU locations to ICU care; 482 were transferred from the ICU to non-ICU care locations, and 2,400 remained in non-ICU care locations. For the ICU Prediction group, the false negative patients were older, more frequently male, and had longer hospital and ICU lengths of stay compared to the true positive patients. The significant differences in the ICU Prediction group for false negative compared to the true positive patients included a less frequent: primary diagnosis of respiratory failure, use of high flow nasal canula, hourly cardio-respiratory vital signs prior to transfer to the ICU, and neurologic vital signs after transfer from the ICU. For the ICU Discharge prediction group, false positive patients were more frequently: younger, had a primary diagnosis of respiratory failure, more frequently received respiratory support after discharge from the ICU, and received less frequent neurological vital signs prior to transfer from the ICU. For the Non-transfer prediction category, demographics and clinical variables did not differ between the true negative and false positive prediction groups.

Conclusion and relevance

We conducted the first comprehensive analysis via structured chart reviews of patient characteristics and care factors that are associated with correct and incorrect predictions of future care locations by the machine learning algorithm, the CI-D, gaining insights into potential new predictor variables for inclusion in the model to improve future model iterations.

Details

Title
Clinical assessment of the criticality index – dynamic, a machine learning prediction model of future care needs in pediatric inpatients
Author
Patel, Anita K  VIAFID ORCID Logo  ; Olson, Taylor  VIAFID ORCID Logo  ; Ray, Christopher  VIAFID ORCID Logo  ; Trujillo-Rivera, Eduardo A; Morizono, Hiroki; Pollack, Murray M
First page
e0320586
Section
Research Article
Publication year
2025
Publication date
Apr 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3198103975
Copyright
© 2025 Patel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.