Abstract

With the continuous progress of information technique, assisted driving technology has become an effective technique to avoid traffic accidents. Due to the complex road conditions and the threat of vehicle information being attacked and tampered with, it is difficult to ensure information security. This paper uses blockchain to ensure the safety of driving information and introduces mobile edge computing technology to monitor vehicle information and road condition information in real time, calculate the appropriate speed, and plan a reasonable driving route for the driver. To solve these problems, this paper proposes a trusted edge resource allocation framework for assisted driving service, which includes two stages: the blockchain generation stage (the first stage) and assisted driving service stage (the second stage). Furthermore, in the first stage, a delay-and-throughput-oriented block generation model for the mobile terminal is designed. In the second stage, a balanced offloading algorithm for assisted driving service based on edge collaboration is proposed to solve the problems of unbalanced load of cluster mobile edge computing (MEC) servers and low resource utilization of the system. And this paper optimizes the throughput of blockchain and delay of the transportation network through deep reinforcement learning (DRL) algorithm. Finally, compared with joint computation and communication resources’ allocation (JCCR) and resource allocation method based on binary offloading (RAB), our proposed scheme can optimize the delay by 7.4% and 26.7%, and support various application services of the vehicular networks more effectively.

Details

Title
A Trusted Edge Resource Allocation Framework for Internet of Vehicles
Author
Zhong, Yuxuan; Xu, Siya; Liao, Boxian; Lu, Jizhao; Meng, Huiping; Wang, Zhili; Chen, Xingyu; Li, Qinghan
Pages
2629-2644
Section
ARTICLE
Publication year
2023
Publication date
2023
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3199832181
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.