It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Appearance-based dynamic Hand Gesture Recognition (HGR) remains a prominent area of research in Human-Computer Interaction (HCI). Numerous environmental and computational constraints limit its real-time deployment. In addition, the performance of a model decreases as the subject’s distance from the camera increases. This study proposes a 3D separable Convolutional Neural Network (CNN), considering the model’s computational complexity and recognition accuracy. The 20BN-Jester dataset was used to train the model for six gesture classes. After achieving the best offline recognition accuracy of 94.39%, the model was deployed in real-time while considering the subject’s attention, the instant of performing a gesture, and the subject’s distance from the camera. Despite being discussed in numerous research articles, the distance factor remains unresolved in real-time deployment, which leads to degraded recognition results. In the proposed approach, the distance calculation substantially improves the classification performance by reducing the impact of the subject’s distance from the camera. Additionally, the capability of feature extraction, degree of relevance, and statistical significance of the proposed model against other state-of-the-art models were validated using t-distributed Stochastic Neighbor Embedding (t-SNE), Mathew’s Correlation Coefficient (MCC), and the McNemar test, respectively. We observed that the proposed model exhibits state-of-the-art outcomes and a comparatively high significance level.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer