Abstract

The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results. Furthermore, the estimated relative depth is projected into 3D space, and the error is calculated against real 3D data, forming a loss function along with the relative depth error. This article adopts the average joint pixel error as the primary performance metric. Compared to the benchmark approach, the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.

Details

Title
Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation
Author
Li, Xianhua; Yu, Haohao; Tian, Shuoyu; Lin, Fengtao; Masood, Usama
Pages
3551-3564
Section
ARTICLE
Publication year
2024
Publication date
2024
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3199833567
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.