It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Object detection has made a significant leap forward in recent years. However, the detection of small objects continues to be a great difficulty for various reasons, such as they have a very small size and they are susceptible to missed detection due to background noise. Additionally, small object information is affected due to the downsampling operations. Deep learning-based detection methods have been utilized to address the challenge posed by small objects. In this work, we propose a novel method, the Multi-Convolutional Block Attention Network (MCBAN), to increase the detection accuracy of minute objects aiming to overcome the challenge of information loss during the downsampling process. The multi-convolutional attention block (MCAB); channel attention and spatial attention module (SAM) that make up MCAB, have been crafted to accomplish small object detection with higher precision. We have carried out the experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) and Pattern Analysis, Statical Modeling and Computational Learning (PASCAL) Visual Object Classes (VOC) datasets and have followed a step-wise process to analyze the results. These experiment results demonstrate that significant gains in performance are achieved, such as 97.75% for KITTI and 88.97% for PASCAL VOC. The findings of this study assert quite unequivocally the fact that MCBAN is much more efficient in the small object detection domain as compared to other existing approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





