It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cervical Cancer (CC) is a rapidly growing disease among women throughout the world, especially in developed and developing countries. For this many women have died. Fortunately, it is curable if it can be diagnosed and detected at an early stage and taken proper treatment. But the high cost, awareness, highly equipped diagnosis environment, and availability of screening tests is a major barrier to participating in screening or clinical test diagnoses to detect CC at an early stage. To solve this issue, the study focuses on building a deep learning-based automated system to diagnose CC in the early stage using cervix cell images. The system is designed using the YOLOv5 (You Only Look Once Version 5) model, which is a deep learning method. To build the model, cervical cancer pap-smear test image datasets were collected from an open-source repository and these were labeled and preprocessed. Then the YOLOv5 models were applied to the labeled dataset to train the model. Four versions of the YOLOv5 model were applied in this study to find the best fit model for building the automated system to diagnose CC at an early stage. All of the model’s variations performed admirably. The model can effectively detect cervical cancerous cell, according to the findings of the experiments. In the medical field, our study will be quite useful. It can be a good option for radiologists and help them make the best selections possible.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer