Abstract

Gait recognition is an active research area that uses a walking theme to identify the subject correctly. Human Gait Recognition (HGR) is performed without any cooperation from the individual. However, in practice, it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat. Researchers, over the years, have worked on successfully identifying subjects using different techniques, but there is still room for improvement in accuracy due to these covariant factors. This paper proposes an automated model-free framework for human gait recognition in this article. There are a few critical steps in the proposed method. Firstly, optical flow-based motion region estimation and dynamic coordinates-based cropping are performed. The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames; the training has been conducted using static hyperparameters. The third step proposed a fusion technique known as normal distribution serially fusion. In the fourth step, a better optimization algorithm is applied to select the best features, which are then classified using a Bi-Layered neural network. Three publicly available datasets, CASIA A, CASIA B, and CASIA C, were used in the experimental process and obtained average accuracies of 99.6%, 91.6%, and 95.02%, respectively. The proposed framework has achieved improved accuracy compared to the other methods.

Details

Title
Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection
Author
Hanif, Ch; Mughal, Muhammad; Khan, Muhammad; Usman Tariq; Ye, Kim; Jae-Hyuk Cha
Pages
5123-5140
Section
ARTICLE
Publication year
2023
Publication date
2023
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3199834733
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.