Abstract

Mobile edge cloud networks can be used to offload computationally intensive tasks from Internet of Things (IoT) devices to nearby mobile edge servers, thereby lowering energy consumption and response time for ground mobile users or IoT devices. Integration of Unmanned Aerial Vehicles (UAVs) and the mobile edge computing (MEC) server will significantly benefit small, battery-powered, and energy-constrained devices in 5G and future wireless networks. We address the problem of maximising computation efficiency in U-MEC networks by optimising the user association and offloading indicator (OI), the computational capacity (CC), the power consumption, the time duration, and the optimal location planning simultaneously. It is possible to assign some heavy tasks to the UAV for faster processing and small ones to the mobile users (MUs) locally. This paper utilizes the k-means clustering algorithm, the interior point method, and the conjugate gradient method to iteratively solve the non-convex multi-objective resource allocation problem. According to simulation results, both local and offloading schemes give optimal solution.

Details

Title
Resource Management in UAV Enabled MEC Networks
Author
Abrar, Muhammad; Almohaimeed, Ziyad; Ajmal, Ushna; Akram, Rizwan; Rooha Masroor; Hussain, Muhammad
Pages
4847-4860
Section
ARTICLE
Publication year
2023
Publication date
2023
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3199834930
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.