Abstract

Time series forecasting and analysis are widely used in many fields and application scenarios. Time series historical data reflects the change pattern and trend, which can serve the application and decision in each application scenario to a certain extent. In this paper, we select the time series prediction problem in the atmospheric environment scenario to start the application research. In terms of data support, we obtain the data of nearly 3500 vehicles in some cities in China from Runwoda Research Institute, focusing on the major pollutant emission data of non-road mobile machinery and high emission vehicles in Beijing and Bozhou, Anhui Province to build the dataset and conduct the time series prediction analysis experiments on them. This paper proposes a P-gLSTNet model, and uses Autoregressive Integrated Moving Average model (ARIMA), long and short-term memory (LSTM), and Prophet to predict and compare the emissions in the future period. The experiments are validated on four public data sets and one self-collected data set, and the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are selected as the evaluation metrics. The experimental results show that the proposed P-gLSTNet fusion model predicts less error, outperforms the backbone method, and is more suitable for the prediction of time-series data in this scenario.

Details

Title
Time Series Forecasting Fusion Network Model Based on Prophet and Improved LSTM
Author
Liu, Weifeng; Yu, Xin; Zhao, Qinyang; Cheng, Guang; Hou, Xiaobing; He, Shengqi
Pages
3199-3219
Section
ARTICLE
Publication year
2023
Publication date
2023
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3199835007
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.