Full text

Turn on search term navigation

© 2025 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Price volatility in agricultural markets is influenced by seasonality, supply-demand fluctuations, policy changes, and climate. These factors significantly impact agricultural production and the broader macroeconomy. Traditional time series models, limited by linear assumptions, often fail to capture the nonlinear nature of price fluctuations. To address this limitation, we propose an integrated forecasting model that combines TCN and XGBoost to improve the accuracy of agricultural price volatility predictions. TCN captures both short-term and long-term dependencies using convolutional operations, while XGBoost enhances its ability to model nonlinear relationships. The model uses 65,750 historical data points from rice, wheat, and corn, with a sliding window technique to construct time series features. Experimental results demonstrate that the TCN-XGBoost model significantly outperforms traditional models such as ARIMA (RMSE = 0.36, MAPE = 8.9%) and LSTM (RMSE = 0.34, MAPE = 8.1%). It also outperforms other hybrid models, such as Transformer-XGBoost (RMSE = 0.23) and CNN-XGBoost (RMSE = 0.29). Specifically, the TCN-XGBoost model achieves an RMSE of 0.26 and a MAPE of 5.3%, underscoring its superior performance. Moreover, the model shows robust performance across various market conditions, particularly during significant price fluctuations. During dramatic price movements, the RMSE is 0.28 and the MAPE is 6.1%, effectively capturing both trends and magnitudes of price changes. By leveraging TCN’s strength in temporal feature extraction and XGBoost’s capability to model complex nonlinear relationships, the TCN-XGBoost integrated model offers an efficient and robust solution for forecasting agricultural prices. This model has broad applicability, particularly in agricultural market decision-making and risk management.

Details

Title
A hybrid TCN-XGBoost model for agricultural product market price forecasting
Author
Zhao, Tianwen; Chen, Guoqing; Suraphee, Sujitta; Phoophiwfa, Tossapol; Busababodhin, Piyapatr  VIAFID ORCID Logo 
First page
e0322496
Section
Research Article
Publication year
2025
Publication date
May 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3199842469
Copyright
© 2025 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.