Abstract

According to the World Health Organization (WHO), cancer is the leading cause of death for children in low and middle-income countries. Around 400,000 kids get diagnosed with this illness each year, and their survival rate depends on the country in which they live. In this article, we present a Pythagorean fuzzy model that may help doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of different types of cancer. The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy TOPSIS, Pythagorean Fuzzy Entropy (PF-Entropy), and Pythagorean Fuzzy Power Weighted Geometric (PFPWG). Our model is fed with nineteen symptoms and it diagnoses the risk of eight types of cancers in children. We develop an algorithm for each method and calculate its complexity. Additionally, we consider an example to make a clear understanding of our model. We also compare the final results of various tests that prove the authenticity of this study.

Details

Title
Comparative Analysis of Pythagorean MCDM Methods for the Risk Assessment of Childhood Cancer
Author
Habib, Shaista; Akram, Muhammad; M. M.
Pages
2585-2615
Section
ARTICLE
Publication year
2023
Publication date
2023
Publisher
Tech Science Press
ISSN
1526-1492
e-ISSN
1526-1506
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3200121345
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.