It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This research investigates the influence of indoor and outdoor factors on photovoltaic (PV) power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency. To predict plant efficiency, nineteen variables are analyzed, consisting of nine indoor photovoltaic panel characteristics (Open Circuit Voltage (Voc), Short Circuit Current (Isc), Maximum Power (Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Filling Factor (FF), Parallel Resistance (Rp), Series Resistance (Rs), Module Temperature) and ten environmental factors (Air Temperature, Air Humidity, Dew Point, Air Pressure, Irradiation, Irradiation Propagation, Wind Speed, Wind Speed Propagation, Wind Direction, Wind Direction Propagation). This study provides a new perspective not previously addressed in the literature. In this study, different machine learning methods such as Multilayer Perceptron (MLP), Multivariate Adaptive Regression Spline (MARS), Multiple Linear Regression (MLR), and Random Forest (RF) models are used to predict power values using data from installed PV panels. Panel values obtained under real field conditions were used to train the models, and the results were compared. The Multilayer Perceptron (MLP) model was achieved with the highest classification accuracy of 0.990%. The machine learning models used for solar energy forecasting show high performance and produce results close to actual values. Models like Multi-Layer Perceptron (MLP) and Random Forest (RF) can be used in diverse locations based on load demand.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer