It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and to implement individual applications via the Shapley Additive explanation (SHAP).
Methods
We included 180 patients with histologically confirmed HCC from two institutions. Clinical and MRI imaging features were screened for predicting cholangiocyte phenotype hepatocellular carcinoma using Least Absolute Shrinkage and Selection Operator (LASSO) and the logistic regression analysis. Five machine learning models were constructed based on these features. A Kaplan–Meier survival analysis aims to compare prognostic differences between cholangiocyte phenotype-positive HCC groups and classical (cholangiocyte phenotype-negative) HCC groups, and was conducted to explore the prognostic information of the optimal model.
Results
The most significant clinicoradiological features, including the platelet-to-lymphocyte ratio (PLR), tumor capsule, target sign on hepatobiliary phase (HBP), and T1 relaxation time of 20 min (T1rt-20 min), were selected to construct the prediction model. Finally, we selected the eXtreme Gradient Boosting (XGBoost) model as the optimal predictive model, which achieved AUCs of 0.835, 0.830, 0.816 and 0.776 in training, internal validation, external validation, and prospective validation cohorts, respectively, for visual analysis via SHAP, in which T1rt-20 min made a significant contribution. Survival analysis showed a statistically significant difference in relapse-free survival (RFS) between cholangiocyte phenotype-positive HCC groups and classical HCC groups from institution I (hazard ratio [HR] 1.994; 95% CI, 1.059–3.758; P = 0.027), and the construction XGBoost model can be used to stratify RFS according to prognosis (HR, 1.986; 95% CI, 1.061–3.717; P = 0.029).
Conclusion
The machine learning model utilizing T1 mapping gadoxetic acid-enhanced MRI demonstrates significant potential in identifying cholangiocyte phenotype HCC. Furthermore, personalized prediction is enhanced through the application of SHAP, providing valuable insights to support clinical decision-making processes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer