Abstract

Background

Natural language processing (NLP) is increasingly being used to extract structured information from unstructured text to assist clinical decision-making and aid healthcare research. The availability of expert-annotated documents for the development and validation of NLP applications is limited. We created synthetic clinical documents to address this, and to validate the Extraction of Epilepsy Clinical Text version 2 (ExECTv2) NLP pipeline.

Methods

We created 200 synthetic clinic letters based on hospital outpatient consultations with epilepsy specialists. The letters were double annotated by trained clinicians and researchers according to agreed guidelines. We used the annotation tool, Markup, with an epilepsy concept list based on the Unified Medical Language System ontology. All annotations were reviewed, and a gold standard set of annotations was agreed and used to validate the performance of ExECTv2.

Results

The overall inter-annotator agreement (IAA) between the two sets of annotations produced a per item F1 score of 0.73. Validating ExECTv2 using the gold standard gave an overall F1 score of 0.87 per item, and 0.90 per letter.

Conclusion

The synthetic letters, annotations, and annotation guidelines have been made freely available. To our knowledge, this is the first publicly available set of annotated epilepsy clinic letters and guidelines that can be used for NLP researchers with minimum epilepsy knowledge. The IAA results show that clinical text annotation tasks are difficult and require a gold standard to be arranged by researcher consensus. The results for ExECTv2, our automated epilepsy NLP pipeline, extracted detailed epilepsy information from unstructured epilepsy letters with more accuracy than human annotators, further confirming the utility of NLP for clinical and research applications.

Details

Title
Annotation of epilepsy clinic letters for natural language processing
Author
Fonferko-Shadrach, Beata; Strafford, Huw; Jones, Carys; Khan, Russell A; Brown, Sharon; Edwards, Jenny; Hawken, Jonathan; Shrimpton, Luke E; White, Catharine P; Powell, Robert; Sawhney, Inder M S; Pickrell, William O; Lacey, Arron S
Pages
1-5
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
20411480
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3201550854
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.