It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Correctly diagnosing and accurately distinguishing mycoplasma pneumonia in children has consistently posed a challenge in clinical practice, as it can directly impact the prognosis of affected children. To address this issue, we analyzed chest X-rays (CXR) using various deep learning models to diagnose pediatric mycoplasma pneumonia.
Methods
We collected 578 cases of children with mycoplasma infection and 191 cases of children with virus infection, with available CXR sets. Three deep convolutional neural networks (ResNet50, DenseNet121, and EfficientNetv2-S) were used to distinguish mycoplasma pneumonia from viral pneumonia based on CXR. Accuracy, area under the curve (AUC), sensitivity, and specificity were used to evaluate the performance of the model. Visualization was also achieved through the use of Class Activation Mapping (CAM), providing more transparent and interpretable classification results.
Results
Of the three models evaluated, ResNet50 outperformed the others. Pretrained with the ZhangLabData dataset, the ResNet50 model achieved 80.00% accuracy in the validation set. The model also showed robustness in two test sets, with accuracy of 82.65 and 83.27%, and AUC values of 0.822 and 0.758. In the test results using ImageNet pre-training weights, the accuracy of the ResNet50 model in the validation set was 80.00%; the accuracy in the two test sets was 81.63 and 62.91%; and the corresponding AUC values were 0.851 and 0.776. The sensitivity values were 0.884 and 0.595, and the specificity values were 0.655 and 0.814.
Conclusions
This study demonstrates that deep convolutional networks utilizing transfer learning are effective in detecting mycoplasma pneumonia based on chest X-rays (CXR). This suggests that, in the near future, such computer-aided detection approaches can be employed for the early screening of pneumonia pathogens. This has significant clinical implications for the rapid diagnosis and appropriate medical intervention of pneumonia, potentially enhancing the prognosis for affected children.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer