It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Smart City (SC) framework is popular due to its advancement in enhancing lives and public safety. However, these advancements lead to many challenges due to the dependency of Internet of Things (IoT) devices in terms of electronic waste and resource consumption. To address those challenges, the integration of a weather-smart grid (WSG) with SC becomes crucial to safeguard the environment and residents’ well-being. Along with these concepts, this study proposes a novel approach, EcoSense: A Revolution in Urban Air Quality Forecasting for Smart Cities, which incorporates Bi-directional Stacked LSTM with a Weather-Smart Grid (BlaSt). BlaSt innovatively integrates several key components: (i) the model captures intricate temporal dependencies and trends in air quality data by incorporating historical air pollutant and meteorological data. (ii) integration of the WSG component enhances the model’s capability to incorporate weather data, which is critical for accurate air quality forecasting. (iii) the model computes 12-hour predictions by designing 1-hour prediction models, enabling it to provide timely forecasts with high precision. BlaSt demonstrates significant improvements over existing models, with enhancements of 36%, 26%, 21%, 46%, 14%, 10%, and 6% in accuracy compared to SVR, MLP, RAQP, Vlachogianni, LSTM, BLSTM, and SLSTM models, respectively. It achieves a mean absolute error (MAE) of 0.10 and a mean squared error (MSE) of 0.08. Additionally, BlaSt reduces computational complexity by 25%, making it more efficient in processing large-scale air quality data. The experimental results demonstrate BlaSt’s superior accuracy and efficiency, showcasing its potential to advance urban air quality forecasting in SCs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer