It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Rationale
There are several approaches to select the optimal positive end-expiratory pressure (PEEP), resulting in different PEEP levels. The impact of different PEEP settings may extend beyond respiratory mechanics, affecting pulmonary hemodynamics.
Objectives
To compare PEEP levels obtained with three titration strategies—(i) highest respiratory system compliance (CRS), (ii) electrical impedance tomography (EIT) crossing point; (iii) positive end-expiratory transpulmonary pressure (PL)—in terms of regional respiratory mechanics and pulmonary hemodynamics.
Methods
Experimental studies in two porcine models of acute lung injury: (I) bilateral injury induced in both lungs, generating a highly recruitable model (n = 37); (II) asymmetrical injury, generating a poorly recruitable model (n = 13). In all experiments, a decremental PEEP titration was performed monitoring PL, EIT (collapse, overdistention, and regional ventilation), respiratory mechanics, and pulmonary and systemic hemodynamics.
Measurements and main results
PEEP titration methods resulted in different levels of median optimal PEEP in bilateral lung injury: 14(12–14) cmH2O for CRS, 11(10–12) cmH2O for EIT, and 8(8–10) cmH2O for PL, p < 0.001. Differences were less pronounced in asymmetrical lung injury. PEEP had a quadratic U-shape relationship with pulmonary artery pressure (R2 = 0.94, p < 0.001), right-ventricular systolic transmural pressure, and pulmonary vascular resistance. Minimum values of pulmonary vascular resistance were found around individualized PEEP, when ventilation distribution and pulmonary circulation were simultaneously optimized.
Conclusions
In porcine models of acute lung injury with variable lung recruitability, both low and high levels of PEEP can impair pulmonary hemodynamics. Optimized ventilation and hemodynamics can be obtained simultaneously at PEEP levels individualized based on respiratory mechanics, especially by EIT and esophageal pressure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer