It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Progressive hearing loss is a common problem in the human population with no effective therapeutics currently available. However, it has a strong genetic contribution, and investigating the genes and regulatory interactions underlying hearing loss offers the possibility of identifying therapeutic candidates. Mutations in regulatory genes are particularly useful for this, and an example is the microRNA miR-96, a post-transcriptional regulator which controls hair cell maturation. Mice and humans carrying mutations in miR-96 all exhibit hearing impairment, in homozygosis if not in heterozygosis, but different mutations result in different physiological, structural and transcriptional phenotypes.
Methods
Here we present our characterisation of two lines of mice carrying different human mutations knocked-in to Mir96. We have carried out auditory brainstem response tests to examine their hearing with age and after noise exposure and have used confocal and scanning electron microscopy to examine the ultrastructure of the organ of Corti and hair cell synapses. Bulk RNA-seq was carried out on the organs of Corti of postnatal mice, followed by bioinformatic analyses to identify candidate targets.
Results
While mice homozygous for either mutation are profoundly deaf from 2 weeks old, the heterozygous phenotypes differ markedly, with only one mutation resulting in hearing impairment in heterozygosis. Investigations of the structural phenotype showed that one mutation appears to lead to synaptic defects, while the other has a much more severe effect on the hair cell stereociliary bundles. Transcriptome analyses revealed a wide range of misregulated genes in both mutants which were notably dissimilar. We used the transcriptome analyses to investigate candidate therapeutics, and tested one, finding that it delayed the progression of hearing loss in heterozygous mice.
Conclusions
Our work adds further support for the importance of the gain of novel targets in microRNA mutants and offers a proof of concept for the identification of pharmacological interventions to maintain hearing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer