It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
X-linked acrogigantism (X-LAG; MIM: 300942) is a severe form of pituitary gigantism caused by chromosome Xq26.3 duplications involving GPR101. X-LAG-associated duplications disrupt the integrity of the topologically associating domain (TAD) containing GPR101 and lead to the formation of a neo-TAD that drives pituitary GPR101 misexpression and gigantism. As X-LAG is fully penetrant and heritable, duplications involving GPR101 identified on prenatal screening studies, like amniocentesis, can pose an interpretation challenge for medical geneticists and raise important concerns for patients and families. Therefore, providing robust information on the functional genomic impact of such duplications has important research and clinical value with respect to gene regulation and triplosensitivity traits.
Methods
We employed 4C/HiC-seq as a clinical tool to determine the functional impact of incidentally discovered GPR101 duplications on TAD integrity in three families. After defining duplications and breakpoints around GPR101 by clinical-grade and high-density aCGH, we constructed 4C/HiC chromatin contact maps for our study population and compared them with normal and active (X-LAG) controls.
Results
We showed that duplications involving GPR101 that preserved the centromeric invariant TAD boundary did not generate a pathogenic neo-TAD and that ectopic enhancers were not adopted. This allowed us to discount presumptive/suspected X-LAG diagnoses and GPR101 misexpression, obviating the need for intensive clinical follow-up.
Conclusions
This study highlights the importance of TAD boundaries and chromatin interactions in determining the functional impact of copy number variants and provides proof-of-concept for using 4C/HiC-seq as a clinical tool to acquire crucial information for genetic counseling and to support clinical decision-making in cases of suspected TADopathies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer