It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Transposable elements (TEs) can influence human diseases by disrupting genome integrity, yet their quantification has been challenging due to the repetitive nature of these sequences across the genome. We develop LocusMasterTE, a method that integrates long-read with short-read RNA-seq to increase the accuracy of TE expression quantification. By incorporating fractional transcript per million values from long-read sequencing data into an expectation–maximization algorithm, LocusMasterTE reassigns multi-mapped reads, enhancing accuracy in short-read-based TE quantification. We validate the method with simulated and human datasets. LocusMasterTE may give new insights into TE functions through precise quantification.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer