It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Bacteria employ diverse molecular systems, such as the type VI secretion system (T6SS) to outcompete other microorganisms and adapt to ecological niches. The T6SS is a versatile nanomachine capable of delivering toxic effectors into neighboring cells, providing advantages in bacterial interactions. In recent years, T6SSs have been proposed as promising tools for engineering selective antimicrobial platforms.
Results
In this study, we successfully engineered Pseudomonas putida KT2440 to heterologously express and release T6SS effectors. The expression of Tse1, an effector from Pseudomonas chlororaphis, induced sporulation in plant-beneficial Bacillus strains via a T6SS-dependent mechanism, particularly when Tse1 was paired with a PAAR protein. Similarly, the engineered strain effectively inhibited Aeromonas hydrophila growth using the phospholipase toxin TplE from Pseudomonas aeruginosa. Furthermore, antifungal activity was achieved by coexpressing Tfe2, an effector from Serratia marcescens, with VgrGs, resulting in increased reactive oxygen species levels and cellular damage in Botrytis cinerea. Importantly, the T6SS was also employed to deliver non-T6SS effectors such as chitosanase, demonstrating its versatility in degrading fungal cell walls.
Conclusions
Our findings demonstrate that the T6SS can be engineered to deliver both canonical and noncanonical effectors, providing a robust platform for targeted antibacterial and antifungal applications. The modularity of the system enables precise pairing of effectors with structural components such as VgrG and PAAR proteins, optimizing delivery efficiency. These engineered systems provide new opportunities for the development of biocontrol strategies in agriculture, microbiome modulation, and potential therapeutic applications. Future advancements in bioinformatics and protein engineering will further increase the specificity and functionality of T6SS-based delivery systems, offering innovative tools for managing microbial ecosystems and addressing global challenges in health and agriculture.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer