It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Thymic epithelial tumors (TETs) are infrequent malignancies that arise from the anterior mediastinum. Therapeutic options for TETs, especially thymic carcinoma (TC), remain relatively constrained. This study aims to investigate the oncogenic hub gene and its underlying mechanisms in TETs, as well as to identify potential therapeutic targets.
Methods
Weighted gene co-expression network analysis (WGCNA) and differential gene expression (DEG) analysis were utilized to identify significant oncogenes using The Cancer Genome Atlas (TCGA) database. LASSO logistic regression analysis was performed to assess the association between hub genes and clinical parameters. The influence of the hub gene on promoting epithelial-mesenchymal transition (EMT), tumor progression, and regulating cancer stem cell-like properties was assessed both in vitro and in vivo. Single-cell RNA sequencing (scRNA-seq) was utilized to analyze the alterations in the tumor and its microenvironment following the administration of the hub gene’s inhibitor. Multiplex immunohistochemistry (mIHC) was employed to validate the results. The potential mechanism was further elucidated through the utilization of Cleavage Under Targets and Tagmentation (CUT&Tag), RNA-sequencing, chromatin immunoprecipitation (ChIP), CUT&RUN, luciferase reporter assay, co-immunoprecipitation (Co-IP), mass spectrometry (MS) and phosphoproteomic assays.
Results
SNAI1 was identified as a hub transcription factor for TETs, and its positive correlation with the invasiveness of the disease was confirmed. Subsequent experiments revealed that the upregulation of SNAI1 augmented the migration, invasion, and EMT of TET cell lines. Furthermore, we observed that the overexpression of SNAI1 sustained cancer stem cell-like properties. ScRNA-seq demonstrated that the use of a SNAI1 inhibitor inhibited the transition of macrophages from M1 to M2 phenotype, a finding further validated by multiplex immunohistochemistry (mIHC). Phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) was identified as one of the downstream targets of SNAI1 through CUT&Tag and RNA-sequencing, a finding validated by ChIP-qPCR, CUT&RUN-qPCR, luciferase reporter and immunofluorescence assays. Co-IP, MS and phosphoproteomic assays further confirmed that PIK3R2 directly interacted with phosphorylated EphA2 (p-EphA2), facilitating downstream GSK3β/β-catenin signaling pathway.
Conclusion
The tumorigenic role of SNAI1 through the PIK3R2/p-EphA2 axis was preliminarily validated in TETs. A potential therapeutic strategy for TETs may involve the inhibition of SNAI1.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer