Abstract

Background

Glioma stem-like cells (GSCs) are key drivers of treatment resistance and recurrence in glioblastoma (GBM). Phosphoglycerate dehydrogenase (PHGDH), a crucial enzyme in the de novo serine synthesis pathway (SSP), is implicated in tumorigenesis and therapy resistance across various cancers. However, its specific role in GBM, particularly in radioresistance, remains poorly understood.

Methods

In silico analysis of GBM patient data assessed SSP enrichment and PHGDH expression linked with tumor stemness. Comparative gene expression analysis focused on PHGDH in paired GBM specimens and GSCs. Genetic and pharmacological loss-of-function assays were performed in vitro and in vivo to evaluate PHGDH’s impact on GSC self-renewal and malignant progression. Comprehensive transcriptomic and metabolomic analyses, along with chromatin immunoprecipitation, mass spectrometry, and various other biochemical assays, were used to elucidate PHGDH-mediated mechanisms in GBM progression and radioresistance.

Results

PHGDH expression is significantly elevated in GSCs, associated with aggressive glioma progression and poor clinical outcomes. PHGDH activation enhances GSC self-renewal by regulating redox homeostasis, facilitating one-carbon metabolism, and promoting DNA damage response via SSP activation. Importantly, MYC was identified as a crucial transcriptional regulator of PHGDH expression. Furthermore, genetic ablation or pharmacological inhibition of PHGDH markedly reduced tumor growth and increased tumor sensitivity to radiotherapy, thereby improving survival outcomes in orthotopic GSC-derived and patient-derived GBM xenograft models.

Conclusions

This study underscores the pivotal role of MYC-mediated PHGDH activation in driving GSC malignant progression and radioresistance in GBM. Targeting PHGDH presents a promising approach to enhance radiotherapy efficacy in GBM patients.

Details

Title
PHGDH activation fuels glioblastoma progression and radioresistance via serine synthesis pathway
Author
Liu, Xiaojin Liungxin; Wang, Junwen; Liu, Hongbin; Wu, Jiasheng; Qi, Yiwei; Liu, Yuan; Zhu, Hongtao; Li, Chaoxi; Liu, Yang; Song, Jian; Yao, Guojie; Tian, Weidong; Zhao, Kai; Lin, Han; Shu, Kai
Pages
1-23
Section
Research
Publication year
2025
Publication date
2025
Publisher
BioMed Central
ISSN
17569966
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3201889902
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.