Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy. This study aimed to investigate the expression and prognostic significance of a key epigenetic complex encompassing DNA methyltransferase-1 (DNMT1), the histone methyltransferase G9a, and the scaffold protein UHRF1 in PDAC. We also evaluated the therapeutic potential of an innovative inhibitor targeting these epigenetic effectors.

Methods

Immunohistochemical analysis of DNMT1, G9a, and UHRF1 expression was conducted in human PDAC tissue samples. Staining was semi-quantitatively scored, and overexpression was defined as moderate to strong positivity. The prognostic impact was assessed by correlating protein expression with patient survival. The antitumoral effects of the dual DNMT1-G9a inhibitor CM272 were tested in PDAC cell lines, followed by transcriptomic analyses to identify underlying mechanisms. The in vivo antitumoral efficacy of CM272 was evaluated in PDAC xenograft and syngeneic mouse models, both alone and in combination with anti-PD1 immunotherapy.

Results

DNMT1, G9a, and UHRF1 were significantly overexpressed in PDAC cells and stroma compared to normal pancreatic tissues. Simultaneous overexpression of the three proteins was associated with significantly reduced survival in resected PDAC patients. CM272 exhibited potent antiproliferative activity in PDAC cell lines, inducing apoptosis and altering key metabolic and cell cycle-related genes. CM272 also enhanced chemotherapy sensitivity and significantly inhibited tumor growth in vivo without detectable toxicity. Combination of CM272 with anti-PD1 therapy further improved antitumor responses and immune cell infiltration, particularly CD4 + and CD8 + T cells.

Conclusions

The combined overexpression of DNMT1, G9a, and UHRF1 in PDAC is a strong predictor of poor prognosis. CM272, by targeting this epigenetic complex, shows promising therapeutic potential by inducing apoptosis, reprogramming metabolic pathways, and enhancing immune responses. The combination of CM272 with immunotherapy offers a novel, effective treatment strategy for PDAC.

Details

Title
Targeting of the G9a, DNMT1 and UHRF1 epigenetic complex as an effective strategy against pancreatic ductal adenocarcinoma
Author
Oyon, Daniel; Lopez-Pascual, Amaya; Castello-Uribe, Borja; Uriarte, Iker; Orsi, Giulia; Llorente, Sofia; Elurbide, Jasmin; Adan-Villaescusa, Elena; Valbuena-Goiricelaya, Emiliana; Irigaray-Miramon, Ainara; Latasa, Maria Ujue; Martinez-Perez, Luz A; Luca Reggiani Bonetti; Prosper, Felipe; Ponz-Sarvise, Mariano; Silvestre Vicent
Pages
1-21
Section
Research
Publication year
2025
Publication date
2025
Publisher
BioMed Central
ISSN
17569966
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3201890130
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.