Full text

Turn on search term navigation

© 2025 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Steel surface defect detection is an important application of object detection in industry. Achieving object detection in industry while balancing detection accuracy and real-time performance is a challenge. Therefore, this paper proposes an improved FasterNet-YOLO model based on the one-stage detector. Introduce the FasterNet network to reconstruct the YOLOv5 backbone network. Achievement of model lightweighting and significant improvement in detection speed, but with a slight reduction in accuracy. The YOLOv5 neck network’s ordinary convolution is improved by depthwise separable convolution. Continuing to improve detection speed while further reducing redundant parameters in the neck network. To improve model accuracy, the Swin-Transformer is integrated into the C3 module in the neck network. Solve the problem of cluttered backgrounds in defect photographs and easy confusion between defect types. Meanwhile, BiFPN is used for feature fusion. By retaining more informative features, the detector’s ability to adapt to targets at different scales is improved. The results indicated that when comparing FasterNet-YOLO with the original model, the parameters were reduced by 49.4%, GFLOPs were reduced by 57.0%, mAP increased by 6.2%, and FPS increased by 54.1%. The improved model not only increases the detection accuracy, but also significantly improves the speed of hot-rolled strip surface defect detection to meet the requirements of real-time detection.

Details

Title
FasterNet-YOLO for real-time detection of steel surface defects algorithm
Author
Yu, Shiwei  VIAFID ORCID Logo  ; Liu, Zelin; Zhang, Liang; Zhang, Xiaoqiang; Wang, Jikui
First page
e0323248
Section
Research Article
Publication year
2025
Publication date
May 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3202081516
Copyright
© 2025 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.