Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thin-bedded beach-bar reservoirs in the continental faulted basins of eastern China hold significant potential, yet pose challenges for unconventional hydrocarbon development due to their thin-layer characteristics and heterogeneity. This study focuses on the Paleogene Lower E3d2 Sub-member in the HHK Depression, Bohai Bay Basin as a case study. We propose an innovative technical framework integrating Self-Organizing Map (SOM) multi-attribute optimization with seismic waveform inversion. Petrophysical analysis demonstrates that waveform-indicated inversion can detect 1.8–3.0 m thin sandstones, achieving a 90.2% mean match rate (95% CI: 87.5–92.7%, n = 12; bootstrap resampling) for training wells and 81.5% (95% CI: 76.8–85.3%, n = 11) for validation wells. By integrating SOM seismic attribute clustering with seismic waveform inversion, we were able to delineate microfacies boundaries with precision, enhancing the visibility of beach-bar sand body distributions. This methodology establishes a new paradigm for thin-bed sandstone prediction in low-well-control areas, providing critical support for geological interpretation and resource evaluation in complex depositional systems.

Details

Title
Integrated SOM Multi-Attribute Optimization and Seismic Waveform Inversion for Thin Sand Body Characterization: A Case Study of the Paleogene Lower E3d2 Sub-Member in the HHK Depression, Bohai Bay Basin
Author
Wang, Jing 1 ; Guan Dayong 2 ; Huang, Xiaobo 2 ; He Youbin 1 ; Li, Hua 1 ; Xu, Wei 2 ; Liu, Rui 2 ; Feng, Bin 1 

 School of Geosciences, Yangtze University, Wuhan 430100, China; [email protected] (J.W.); [email protected] (H.L.); 
 CNOOC China Limited Tianjin Branch, Tianjin 300450, China 
First page
5134
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203188848
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.