Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The B3 transcription factor superfamily, crucial for plant growth and stress adaptation, remains poorly characterized in cucumber (Cucumis sativus), a globally important vegetable crop. Here, we conducted the first genome-wide identification of 52 B3 superfamily genes in cucumber, classifying them into LAV, ARF, RAV, and REM subfamilies through integrated phylogenetic and structural analyses. These genes exhibited conserved B3 domains with lineage-specific motif architectures and diverse exon–intron organizations, particularly within the structurally divergent REM subfamily. Collinearity analysis revealed segmental duplication as a key driver of family expansion, notably between syntenic REM clusters on chromosomes 2 (CsREM5-7) and 6 (CsREM18-20). Promoter cis-element profiling identified enrichment in hormone-responsive and stress adaptation motifs, suggesting functional diversification in signaling pathways. Furthermore, tissue-specific expression divergence was observed across 10 organs, with ARF members displaying broad regulatory roles and REM genes showing apical meristem enrichment. Strikingly, CsRAV8 exhibited glandular trichome-specific expression, a novel finding, given Arabidopsis RAVs’ lack of trichome-related functions. Spatial validation via in situ hybridization localized CsRAV8 transcripts to trichome glandular head cells. Functional investigation using virus-induced gene silencing (VIGS) demonstrated that CsRAV8 suppression caused significant glandular trichome shriveling, implicating its role in maintaining glandular cavity integrity. This study provides the first comprehensive genomic inventory of B3 transcription factors in cucumber, providing evolutionary insights and functional frameworks for future functional genomics studies.

Details

Title
B3 Superfamily in Cucumber (Cucumis sativus L.): Identification, Evolution, Expression Patterns, and Function in Glandular Trichome Development
Author
Dong Mingming 1 ; Sun, Lei 2 ; Wang, Wujun 1 ; Wang, Yaru 1 ; Li, Shan 1 ; Liu, Xingwang 3   VIAFID ORCID Logo  ; Ren Huazhong 4 

 Sanya Institute of China Agricultural University, Sanya 572019, China 
 Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen 518119, China 
 Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China 
 Sanya Institute of China Agricultural University, Sanya 572019, China, Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen 518119, China, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China 
First page
4031
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203199168
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.