Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Multiscale Geographically and Temporally Weighted Regression model overcomes the limitation of estimating spatiotemporal variation characteristics of regression coefficients for different variables under a single scale, making it a powerful tool for exploring the spatiotemporal scale characteristics of regression relationships. Currently, the most widely used estimation method for multiscale spatiotemporal geographically weighted models is the backfitting-based iterative approach. However, the iterative process of this method leads to a substantial computational burden and the accumulation of errors during iteration. This paper proposes a non-iterative estimation method for the MGTWR model, combining local linear fitting and two-step weighted least squares estimation techniques. Initially, a reduced bandwidth is used to fit a local linear GTWR model to obtain the initial estimates. Then, for each covariate, the optimal bandwidth and regression coefficients are estimated by substituting the initial estimates into a localized least squares problem. Simulation experiments are conducted to evaluate the performance of the proposed non-iterative method compared to traditional methods and the backfitting-based approach in terms of coefficient estimation accuracy and computational efficiency. The results demonstrate that the non-iterative estimation method for MGTWR significantly enhances computational efficiency while effectively capturing the scale effects of spatiotemporal variation in the regression coefficient functions for each predictor.

Details

Title
Non-Iterative Estimation of Multiscale Geographically and Temporally Weighted Regression Model
Author
Ya-Di, Dai; Hui-Guo, Zhang
First page
1446
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203211294
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.