Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel 3-amino-5-mercapto-1,2,4-triazole functionalized graphene oxide composite (GO-ATT) was successfully prepared via a covalent coupling method, then employed for the removal of p-nitrophenol (PNP) from wastewater. The morphology as well as the composition of GO-ATT composite were investigated using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron spectroscopy (XPS). The surface charge of GO-ATT composite was evaluated by Zeta potential analyses. The surface area and pore size distribution of GO-ATT composite were analyzed using specific surface analyses using the Brunauer–Emmett–Teller (BET) method. Batch adsorption experiments were performed to investigate the effects of conditional factors, including contact time, solution pH, initial PNP concentration, and contact temperature, on the adsorption process. A maximum adsorption capacity of PNP by GO-ATT composite (0.287 mmol g−1) could be obtained at 25 °C. Freundlich isotherm (R2 > 0.92505) can better describe the adsorption behavior of PNP on GO-ATT composite. The thermodynamic functions (ΔG°, ΔH°, ΔS°) indicate that adsorption is a spontaneous, endothermic, entropy-increasing process and features physisorption. The adsorption behavior of PNP on GO-ATT composite conformed to the nonlinear pseudo-second-order kinetic model. Adsorption mechanism investigation indicated that the electrostatic, π-π stacking, and hydrogen bonding interactions were involved in the adsorption process. After 10 adsorption–desorption cycles, the adsorbent exhibited a stable and efficient removal rate (94%) for PNP. Due to its advantages of a high efficiency, excellent reusability, and high stability, the covalently coupled GO-ATT composite might be used as an effective adsorbent for the removal of phenolic contaminants from wastewater.

Details

Title
A N, S-Containing Graphene Oxide Composite for the Adsorptive Removal of p-Nitrophenol from Aqueous Solutions
Author
Bi, Yang 1 ; Tao-Tao, Shi 2 ; Wei-Guo, Hu 1 ; Guan-Jin, Gao 1 ; Liu, Yi-Ping 3 ; Jin-Gang, Yu 1   VIAFID ORCID Logo 

 College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; [email protected] (B.Y.); [email protected] (W.-G.H.); [email protected] (G.-J.G.) 
 Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China; [email protected] 
 Hunan Provincial Institute of Cotton and Sericultural Research, Hunan Academy of Agricultural Sciences, Changsha 410127, China 
First page
2046
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203216578
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.