Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study presents an on-line intelligent lubrication system utilizing specialty grease to address lubricant loss and uneven coating issues in traditional methods. Characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), the specialty grease demonstrates superior tribological performance, achieving a 46.7% reduction in the average friction coefficient and 33.3% smaller wear scar diameter under a 392 N load compared to conventional lubricants. The system features an automatic control vehicle design integrating heating, grease supply, lubrication-scraping mechanisms, and a dual closed-loop intelligent control system combining PID-based temperature regulation with machine vision. Experiments identified 50 °C as the optimal heating temperature. Kinematic modeling and grease consumption analysis guided greasing parameters optimization, validated through simulations and practical tests. Evaluated on a 20 m long, 36.5 mm diameter wire rope, the system achieved full coverage within 60 s, forming a uniform lubricant layer of 0.3–1.0 mm thickness (±0.15 mm deviation). It realizes the innovative application of high-adhesion lubricating grease, adaptive process control, and real-time thickness feedback technology, significantly improving the lubrication effect, reducing maintenance costs, and extending the lifespan of the wire rope. This provides intelligent lubrication technology support for the reliable operation of wire ropes in industrial fields.

Details

Title
Research on the Design of an On-Line Lubrication System for Wire Ropes
Author
Zhou, Fan 1 ; Wang, Yuemin 2 ; Gong Ruqing 2 

 College of Power Engineering, Naval University of Engineering, Wuhan 430030, China; [email protected] (F.Z.); [email protected] (R.G.), College of Intelligent Manufacturing, Wuhan Technical University, Wuhan 430079, China 
 College of Power Engineering, Naval University of Engineering, Wuhan 430030, China; [email protected] (F.Z.); [email protected] (R.G.) 
First page
2695
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203224579
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.