Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Determining the sea surface height using Global Navigation Satellite System (GNSS) buoys is an important method for satellite altimetry calibration. The buoys observe the absolute height of the sea surface using GNSS positioning technology, which is then used to correct the systematic deviation of the altimeter of the orbiting satellite. Due to the challenging observational conditions, such as significant multipath errors in GNSS code observation and complex variations in buoy position and attitude, gross errors in GNSS buoy positioning reduce the accuracy and stability of the calculated sea surface heights. To accurately detect and remove these gross errors from GNSS coordinate time series, the complementary ensemble empirical mode decomposition (CEEMD) method and the interquartile range (IQR) method were adopted to enhance the accuracy and stability of GNSS sea surface altimetry. Firstly, the raw GNSS sequential coordinate series are decomposed into main terms, such as trend contents and periodic contents, and high-frequency noise terms using the CEEMD method. Subsequently, the high-frequency noise terms of the GNSS coordinate series are regarded as the residual sequences, which are used to detect gross errors using the IQR method. This approach, which integrates the CEEMD and IQR methods, was named CEEMD-IQR and enhances the ability of the traditional IQR method to detect subtle gross errors in GNSS coordinate time series. The results indicated that the CEEMD-IQR method effectively detected gross errors in offshore GNSS coordinate time series using GNSS buoys, presenting a significant enhancement in the gross error detection rate of at least 35.3% and providing a “clean” time series for sea level measurements. The resulting GNSS sea surface altimetry accuracy was found to be better than 1.51 cm.

Details

Title
Detection and Mitigation of GNSS Gross Errors Utilizing the CEEMD and IQR Methods to Determine Sea Surface Height Using GNSS Buoys
Author
Wang, Jin 1 ; Yan, Shiwei 2 ; Tu, Rui 2 ; Zhang, Pengfei 2   VIAFID ORCID Logo 

 College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] (J.W.); [email protected] (S.Y.); [email protected] (R.T.), Chinese Academy of Surveying and Mapping, Beijing 100830, China 
 College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] (J.W.); [email protected] (S.Y.); [email protected] (R.T.) 
First page
2863
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203247567
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.