Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To promote sustainable development in urban environments, minimising the reflected light pollution from glass curtain walls is critical. This study investigates numerical evaluation methods for assessing the impact of curtain wall-reflected light on road traffic light pollution. While existing research focuses on indoor glare and static target pollution, limited attention has been given to the dynamic impacts on moving traffic participants. This research evaluates light pollution (discomfort glare) induced by triple-layer hollow glass curtain walls in green buildings. A mathematical model predicting the solar reflection characteristics (reflectivity and brightness) was established using optical equations, with the accuracy verified through field experiments and numerical simulations. Subsequently, a driver discomfort glare (DDG) evaluation model was developed, incorporating the dynamic relationships between reflected light sources and drivers, including relative position variations, vertical eye illumination, and correlations between sightlines, driving speed, and road terrain. A numerical simulation system was implemented using Rhino’s Ladybug + Honeybee tools, demonstrated through a case analysis of high-rise buildings in Dalian. The system simulated glare effects under sunny/snowy conditions while examining thickness-related variations. The results revealed significant correlations between the glass thickness, weather conditions, and discomfort glare intensity. The proposed DDG model and simulation approach offer practical tools for assessing dynamic light pollution impacts, supporting the theoretical evaluation of outdoor light environments in green buildings. This methodology provides an effective framework for analysing the moving-target light pollution from architectural reflections, advancing sustainable urban design strategies.

Details

Title
Numerical Modelling and Dynamic Evaluation of Building Glass Curtain Wall-Reflected Glare Pollution for Road Vehicle Drivers
Author
Peng Ruichen; Zhang Jili; Han, Yanli
First page
3823
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203261244
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.