Full text

Turn on search term navigation

© 2024, Mendez-Perez et al This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.

Details

Title
Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
Author
Mendez-Perez, Almudena 1 ; Acosta-Moreno, Andres M 1 ; Wert-Carvajal, Carlos 2 ; Ballesteros-Cuartero, Pilar 1 ; Sánchez-García, Ruben 3 ; Macias, Jose R 1 ; Sanz-Pamplona Rebeca 4 ; Alemany, Ramon 5 ; Oscar Sorzano Carlos 1 ; Munoz-Barrutia Arrate 6   VIAFID ORCID Logo  ; Veiga Esteban 1   VIAFID ORCID Logo 

 https://ror.org/015w4v032 Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid Spain 
 https://ror.org/015w4v032 Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid Spain, https://ror.org/03ths8210 Departamento de Bioingenieria, Universidad Carlos III de Madrid, Leganés Madrid Spain 
 https://ror.org/015w4v032 Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid Spain, https://ror.org/052gg0110 University of Oxford, Department of Statistics & XChem Oxford United Kingdom 
 https://ror.org/01j1eb875 Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat Barcelona Spain, https://ror.org/03fyv3102 University Hospital Lozano Blesa, Aragon Health Research Institute (IISA), ARAID Foundation, Aragon Government Zaragoza Spain 
 https://ror.org/01nv2xf68 Procure Program, Institut Català d'Oncologia-Oncobell Program, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat Barcelona Spain 
 https://ror.org/03ths8210 Departamento de Bioingenieria, Universidad Carlos III de Madrid, Leganés Madrid Spain 
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2025
Publication date
2025
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3204257923
Copyright
© 2024, Mendez-Perez et al This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.