Full text

Turn on search term navigation

© 2025 Xue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In post-disaster scenarios, effective rescue operations hinge on deploying robots equipped with sophisticated path planning algorithms capable of navigating through complex and unknown environments, facilitating an exhaustive search for survivors. The inherent limitations of traditional Coverage Path Planning (CPP) algorithms, particularly their struggle to adapt to the highly dynamic and unpredictable nature of post-disaster environments characterized by collapsed structures, shifting debris fields, and unforeseen obstacles, hinder their effectiveness in time-sensitive rescue operations. To address the challenges, this paper introduces an innovative three-stage online CPP method, termed Ant Colony Optimization based Robot Exploration with Escape Mechanism (AntBot-EX). Our three-stage approach leverages the strengths of different algorithms. Firstly, we utilize a modified Ant Colony Optimization algorithm to explore the unknown environment efficiently, prioritizing uncharted territories and avoiding potential dead ends using an escape mechanism. Secondly, the remaining unexplored areas are segmented, enabling targeted path planning with the algorithm to maximize coverage. Thirdly, to address computational limitations in large and complex environments, a configurable boundary-aware and a score-based threshold are introduced to simplify paths by strategically disregarding irrelevant regions, optimizing search efficiency. Simulation results show that our method can basically achieve complete coverage in complex and unknown environments.

Details

Title
AntBot-EX: Enhancing robot search efficiency in complex post-disaster environments
Author
Yao Xue  VIAFID ORCID Logo  ; Tan, Chee Keong  VIAFID ORCID Logo  ; Wai Peng Wong  VIAFID ORCID Logo 
First page
e0322980
Section
Research Article
Publication year
2025
Publication date
May 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3206832543
Copyright
© 2025 Xue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.