Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increasing demand for high-quality forage alternatives necessitates the exploration of novel feed resources such as giant juncao (GJ). This study evaluated the feasibility of giant juncao (GJ) as silage by analyzing its fermentation products, bacterial community, and metabolic profiles during ensiling. After the natural fermentation of giant juncao (NGJ) for 1, 3, 7, 15, 30, and 60 days, a random sampling of NGJ was conducted to analyze its chemical composition, fermentation parameters, and microbial number. Fresh, 3-day, and 60-day ensiled GJ were further analyzed via high-throughput sequencing and KEGG functional prediction. Following 60 days of ensiling, NGJ displayed acetate-type fermentation with high acetic acid and ammonia nitrogen concentrations, and low lactic acid concentration and the ratio of lactic-to-acetic acid. A microbial community analysis indicated Weissella as the predominant genus during the initial fermentation phase (3-day NGJ), whereas Lactobacillus emerged as the dominant taxonomic group in the late-stage fermentation (60-day NGJ). A comparative functional analysis revealed statistically significant divergences (p < 0.05) in KEGG pathway distributions between fresh and ensiled GJ. The ensiling process notably inhibited pathways associated with lipid synthesis, cofactor and vitamin metabolism, energy production, and amino acid utilization while concurrently enhancing carbohydrate and nucleotide metabolic activities. A nutritional evaluation confirmed GJ’s suitability as a sustainable silage maize alternative, with favorable water-soluble carbohydrate (8.57% DM) and crude protein (14.6% DM) levels. To ensure optimal preservation efficacy, the experimental findings emphasize the necessity of a minimum 30-day fermentation period for stabilizing GJ silage quality. These findings offer valuable insight into the microbial and metabolic mechanisms of high-moisture silage fermentation.

Details

Title
Fermentation Dynamics, Microbial Succession, and Metabolic Shifts in High-Moisture Giant Juncao Silage
Author
Xin-Yu, Liang; Shao Tao; Jun-Feng, Li  VIAFID ORCID Logo  ; Zhi-Hao, Dong  VIAFID ORCID Logo  ; Zhao, Jie  VIAFID ORCID Logo 
First page
1028
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211846462
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.