Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is experimentally established that there is no ground triplet state of the natural He atom. There is also no exact analytical solution to the Schrödinger equation corresponding to this state. For a two-dimensional two-electron ‘artificial atom’ or a semiconductor quantum dot in a magnetic field, as described by the Schrödinger–Pauli equation, we provide theoretical proof of the existence of a ground triplet state by deriving an exact analytical correlated wave function solution to the equation. The state exists in the Wigner high-electron-correlation regime. We further explain that the solution satisfies all requisite symmetry and electron coalescence constraints of a triplet state. Since, due to technological advances, such a Wigner crystal quantum dot can be created, we propose an experimental search for the theoretically predicted ground triplet-state spectral line. We note that there exists an analytical solution to the Schrödinger–Pauli equation for a ground singlet state in the Wigner regime for the same value of the magnetic field. The significance to quantum mechanics of the probable experimental observation of the ground triplet state for an ‘artificial atom’ is discussed.

Details

Title
Theoretical Proof of and Proposed Experimental Search for the Ground Triplet State of a Wigner-Regime Two-Electron ‘Artificial Atom’ in a Magnetic Field
Author
Slamet Marlina 1   VIAFID ORCID Logo  ; Sahni Viraht 2   VIAFID ORCID Logo 

 Department of Chemistry & Physics, Sacred Heart University, Fairfield, CT 06825, USA; [email protected] 
 Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA, Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA 
First page
349
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20751680
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211858321
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.