Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Glioblastoma (GBM) presents significant therapeutic challenges due to its invasive nature and resistance to standard chemotherapy, i.e., temozolomide (TMZ). This study aimed to identify gene signatures that predict poor TMZ response and high PD−L1/PD−1 tumor expression, and explore potential sensitivity to alternative drugs. We analyzed The Cancer Genome Atlas (TCGA) biopsy data to identify differentially expressed genes (DEGs) linked to these characteristics. Among 33 upregulated DEGs, 5 were significantly correlated with overall survival. A risk score model was built using these 5 DEGs, classifying patients into low-, medium-, and high-risk groups. We assessed immune cell infiltration, immunosuppressive mediators, and epithelial–mesenchymal transition (EMT) markers in each group using correlation analysis, Gene Set Enrichment Analysis (GSEA), and machine learning. The model demonstrated strong predictive power, with high-risk patients exhibiting poorer survival and increased immune infiltration. GSEA revealed upregulation of immune and EMT-related pathways in high-risk patients. Our analyses suggest that high-risk patients may exhibit limited response to PD−1 inhibitors, but could show sensitivity to etoposide and paclitaxel. This risk score model provides a valuable tool for guiding therapeutic decisions and identifying alternative chemotherapy options to enable the development of personalized and cost-effective treatments for GBM patients.

Details

Title
Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition
Author
Gonzalez Nazareno 1   VIAFID ORCID Logo  ; Perez, Küper Melanie 1   VIAFID ORCID Logo  ; Garcia, Fallit Matias 2   VIAFID ORCID Logo  ; Nicola Candia Alejandro J. 1   VIAFID ORCID Logo  ; Peña Agudelo Jorge A. 1   VIAFID ORCID Logo  ; Suarez, Velandia Maicol 1   VIAFID ORCID Logo  ; Romero, Ana Clara 1 ; Videla-Richardson, Guillermo Agustin 3 ; Candolfi Marianela 1 

 Instituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 10th floor, Buenos Aires C1121ABG, Argentina; [email protected] (N.G.); [email protected] (M.P.K.); [email protected] (M.G.F.); [email protected] (A.J.N.C.); [email protected] (J.A.P.A.); [email protected] (M.S.V.); [email protected] (A.C.R.) 
 Instituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 10th floor, Buenos Aires C1121ABG, Argentina; [email protected] (N.G.); [email protected] (M.P.K.); [email protected] (M.G.F.); [email protected] (A.J.N.C.); [email protected] (J.A.P.A.); [email protected] (M.S.V.); [email protected] (A.C.R.), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428AQK, Argentina 
 Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires C1121A6B, Argentina; [email protected] 
First page
572
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211860360
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.