Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In agriculture, machine learning (ML) and deep learning (DL) have increased significantly in the last few years. The use of ML and DL for image classification in plant disease has generated significant interest due to their cost, automatization, scalability, and early detection. However, high-quality image datasets are required to train robust classifier models for plant disease detection. In this work, we have created an image dataset of 649 orange leaves divided into two groups: control (n = 379) and huanglongbing (HLB) disease (n = 270). The images were acquired with several smartphone cameras of high resolution and processed to remove the background. The dataset enriches the information on characteristics and symptoms of citrus leaves with HLB and healthy leaves. This enhancement makes the dataset potentially valuable for disease identification through leaf segmentation and abnormality detection, particularly when applying ML and DL models.

Dataset: DOI: 10.17632/jgkh2jxbwt.1. URL: https://data.mendeley.com/datasets/jgkh2jxbwt/1 (accessed on 22 April 2025)

Dataset Licence: CC-BY-4.0

Details

Title
Orange Leaves Images Dataset for the Detection of Huanglongbing
Author
Torres-Galván, Juan Carlos 1   VIAFID ORCID Logo  ; Hernández Herrera Paul 1 ; Obispo Juan Antonio 2 ; Cruz Xocoyotzin Guadalupe Ávila 2 ; Ibarra Liliana Montserrat Camacho 2 ; Orosco Paula Magaldi Morales 2 ; Alba, Alfonso 3 ; Arce-Santana, Edgar R 3 ; Arce-Guevara Valdemar 3 ; Murguía, J S 3   VIAFID ORCID Logo  ; Guevara, Edgar 1   VIAFID ORCID Logo  ; Ramírez-Elías, Miguel G 1   VIAFID ORCID Logo 

 Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico; [email protected] (J.C.T.-G.); 
 Comité Estatal de Sanidad Vegetal de San Luis Potosí, Rioverde 796133, Mexico 
 Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico; [email protected] (J.C.T.-G.);, Laboratorio Nacional-Centro de Investigación, Instrumentación e Imagenología Médica, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico 
First page
56
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23065729
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211934101
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.