Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Image super-resolution (SR) reconstruction is a critical task aimed at enhancing low-quality images to obtain high-quality counterparts. Existing denoising diffusion models have demonstrated commendable performance in handling image SR reconstruction tasks; however, they often require thousands—or even more—diffusion sampling steps, significantly prolonging the training duration for the denoising diffusion model. Conversely, reducing the number of diffusion steps may lead to the loss of intricate texture features in the generated images, resulting in overly smooth outputs despite improving the training efficiency. To address these challenges, we introduce a novel diffusion model named RapidDiff. RapidDiff uses a state-of-the-art conditional noise predictor (CNP) to predict the noise distribution at a level that closely resembles the real noise properties, thereby reducing the problem of high-variance noise produced by U-Net decoders during the noise prediction stage. Additionally, RapidDiff enhances the efficiency of image SR reconstruction by focusing on the residuals between high-resolution (HR) and low-resolution (LR) images. Experimental analyses confirm that our proposed RapidDiff model achieves performance that is either superior or comparable to that of the most advanced models that are currently available, as demonstrated on both the ImageNet dataset and the Alsat-2b dataset.

Details

Title
Design of a Novel Conditional Noise Predictor for Image Super-Resolution Reconstruction Based on DDPM
Author
Zhang Jiyan  VIAFID ORCID Logo  ; Sun, Hua; Fan Haiyang; Xiong Yujie; Zhang, Jiaqi
First page
138
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212024457
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.