Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We investigated the attitude control of a towfish to enhance the image quality of its sound navigation ranging system. The target towfish is equipped with two elevators on the horizontal tail wing, and attitude control is performed using these actuators. In particular, when a high-resolution sonar system is mounted on the towfish, any irregular movement can cause defocusing; thus, attitude control of the towfish is essential. Because the towfish has no thrust of its own and moves by being connected to a mother vessel via a cable, its attitude must be controlled by comprehensively analyzing its towing force and equation of motion. Herein, we propose a method for calculating the region where the attitude of the towfish can be controlled based on changes in the center of gravity, towing speed, and towing point. We conducted a water tank test to verify this method and confirmed that the attitude of the towfish could be controlled in controllable areas but not in uncontrollable regions.

Details

Title
Derivation of the Controllable Region for Attitude Control of Towfish and Verification Through Water Tank Test
Author
Lee, Jihyeong 1 ; Min-Kyu, Kim 2 

 Maritime ICT & Mobility Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; [email protected] 
 Maritime Robotics Test & Evaluation Center, Korea Institute of Ocean Science & Technology, Pohang 37553, Republic of Korea 
First page
834
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212027147
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.