Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate forecasting of offshore wind speed is crucial for the efficient operation and planning of wind energy systems. However, the inherently non-stationary and highly volatile nature of wind speed, coupled with the sensitivity of neural network-based models to parameter settings, poses significant challenges. To address these issues, this paper proposes an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by CRGWAA. The proposed CRGWAA integrates Chebyshev mapping initialization, an elite-guided reflection refinement operator, and a generalized quadratic interpolation strategy to enhance population diversity, adaptive exploration, and local exploitation capabilities. The performance of CRGWAA is comprehensively evaluated on the CEC2022 benchmark function suite, where it demonstrates superior optimization accuracy, convergence speed, and robustness compared to six state-of-the-art algorithms. Furthermore, the ANFIS-CRGWAA model is applied to short-term offshore wind speed forecasting using real-world data from the offshore region of Fujian, China, at 10 m and 100 m above sea level. Experimental results show that the proposed model consistently outperforms conventional and hybrid baselines, achieving lower MAE, RMSE, and MAPE, as well as higher R2, across both altitudes. Specifically, compared to the original ANFIS-WAA model, the RMSE is reduced by approximately 45% at 10 m and 24% at 100 m. These findings confirm the effectiveness, stability, and generalization ability of the ANFIS-CRGWAA model for complex, non-stationary offshore wind speed prediction tasks.

Details

Title
Improving Offshore Wind Speed Forecasting with a CRGWAA-Enhanced Adaptive Neuro-Fuzzy Inference System
Author
Liu, Yingjie 1   VIAFID ORCID Logo  ; Miao Fahui 2 

 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; [email protected] 
 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; [email protected], Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing 100039, China 
First page
908
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212028200
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.