Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper introduces a novel framework for generating synthetic time-series data from turbine engine sensor readings using a text-conditioned diffusion model. The approach begins with dataset preprocessing, including correlation analysis, feature selection, and normalization. Principal Component Analysis (PCA) transforms the normalized signals into three components, mapped to the RGB channels of an image. These components, combined with engine identifiers and cycle information, form compact 19 × 19 × 3 pixel images, later scaled to 512 × 512 × 3 pixels. A variational autoencoder (VAE)-based diffusion model, fine-tuned on these images, leverages text prompts describing engine characteristics to generate high-quality synthetic samples. A reverse transformation pipeline reconstructs synthetic images back into time-series signals, preserving the original engine-specific attributes while removing padding artifacts. The quality of the synthetic data is assessed by training Remaining Useful Life (RUL) estimation models and comparing performance across original, synthetic, and combined datasets. Results demonstrate that synthetic data can be beneficial for model training, particularly in the early epochs when working with limited datasets. Compared to existing approaches, which rely on generative adversarial networks (GANs) or deterministic transformations, the proposed framework offers enhanced data fidelity and adaptability. This study highlights the potential of text-conditioned diffusion models for augmenting time-series datasets in industrial Prognostics and Health Management (PHM) applications.

Details

Title
Text-Conditioned Diffusion-Based Synthetic Data Generation for Turbine Engine Sensor Analysis and RUL Estimation
Author
Mora-de-León, Luis Pablo  VIAFID ORCID Logo  ; Solís-Martín, David  VIAFID ORCID Logo  ; Galán-Páez, Juan  VIAFID ORCID Logo  ; Borrego-Díaz Joaquín  VIAFID ORCID Logo 
First page
374
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212071272
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.