Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

GH2097, a Fe-Ni-Co-based superalloy extensively employed in high-temperature critical components such as aircraft engines, was investigated to elucidate the influence of Si content on its precipitation behavior and mechanical properties. By systematically adjusting Si concentrations, it was demonstrated that Si significantly modulates the size, distribution, and stability of γ′ phase (Ni3TiNb). As Si content increases, γ′ phase coarsening (mean size: 30.1→40.3 nm) results in a marginal increase in volume fraction of 2%. Mechanical testing revealed a direct correlation between Si content and yield strength enhancement, achieving a maximum increment of 97.1 MPa. Post solution-aging treatment, γ′ strengthening dominated the strengthening mechanisms in GH2097, contributing over 50% to the overall strength. Microstructural characterization (SEM/TEM) further confirmed that optimal Si addition balances precipitation kinetics and grain boundary stabilization without inducing detrimental phases. Therefore, it is important to consider the role of the Si element in the microstructure control of GH2907 alloy.

Details

Title
The Role of Si Element on the Precipitation Behavior of GH2907 Superalloys
Author
Li Mengxuan 1 ; Wan Jianping 2 ; Ding Zuojun 2 ; Li Rengeng 1   VIAFID ORCID Logo 

 Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China; [email protected] 
 Paike New Materials Co., Ltd., Wuxi 214161, China; [email protected] (J.W.); [email protected] (Z.D.) 
First page
484
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212082598
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.