Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thermotropic polyesters are a subject of keen interest due to their exceptional heat resistance, thermal stability, and high strength. However, these thermal characteristics pose significant constraints on standard manufacturing processes, as the melting temperatures of these polymers can exceed 300 °C. This study explored the feasibility of manufacturing final items molded from prepolymers through a solid-state polymerization process. A copolymer composed of 4-acetoxybenzoic acid (4ABA), 3-acetoxybenzoic acid (3ABA), and 4′-acetoxybiphenyl-4-carboxylic acid (ABCA) was synthesized using melt polycondensation. To comprehensively evaluate the performance of the resulting material, several sets of samples were prepared, including those containing TiO2. Experimental samples from the pre-polymers were obtained through injection molding followed by high-temperature solid-state post-polymerization. The final products underwent a range of tests, including rheological and mechanical analyses, as well as thermal evaluations. The products demonstrated sufficient strength and stability. The proposed method of solid-state post-condensation offers significant potential advantages for the practical application of manufacturing high-performance engineering materials.

Details

Title
Processing of Thermotropic Fully Aromatic Polyesters by Powder Molding Accompanied by Solid-State Post-Polymerization
Author
Mikhaylov, Pavel A  VIAFID ORCID Logo  ; Mityukov, Anton V  VIAFID ORCID Logo  ; Dudka, Dmitry V  VIAFID ORCID Logo  ; Golubev, Yaroslav V  VIAFID ORCID Logo  ; Kulichikhin, Valery G  VIAFID ORCID Logo  ; Malkin, Alexander Ya  VIAFID ORCID Logo 
First page
1358
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212095680
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.