Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The primary purpose of video surveillance is to monitor public indoor areas or the boundaries of secure facilities to safeguard them against theft, unauthorized access, fire, and various other potential threats. Security cameras, equipped with integrated video surveillance systems, are strategically placed throughout critical locations on the premises, allowing security personnel to observe all areas for specific behaviors that may signal an emergency or a situation requiring intervention. A significant challenge arises from the fact that individuals cannot maintain focus on multiple screens simultaneously, which can result in the oversight of crucial incidents. In this regard, artificial intelligence (AI) video analytics has become increasingly prominent, driven by numerous practical applications that include object identification, detection of unusual behavior patterns, facial recognition, and traffic management. Recent advancements in this technology have led to enhanced functionality, remarkable accuracy, and reduced costs for consumers. There is a noticeable trend towards upgrading security frameworks by incorporating AI into pre-existing video surveillance systems, thus leading to modern video surveillance that leverages video analytics, enabling the detection and reporting of anomalies within mere seconds, thereby transforming it into a proactive security solution. In this context, the AiWatch system introduces digital twin (DT) technology in a modern video surveillance architecture to facilitate advanced analytics through the aggregation of data from various sources. By exploiting AI and DT to analyze the different sources, it is possible to derive deeper insights applicable at higher decision levels. This approach allows for the evaluation of the effects and outcomes of actions by examining different scenarios, hence yielding more robust decisions.

Details

Title
AiWatch: A Distributed Video Surveillance System Using Artificial Intelligence and Digital Twins Technologies
Author
Ferone Alessio  VIAFID ORCID Logo  ; Maratea, Antonio  VIAFID ORCID Logo  ; Camastra Francesco  VIAFID ORCID Logo  ; Ciaramella Angelo  VIAFID ORCID Logo  ; Staiano Antonino  VIAFID ORCID Logo  ; Lettiero Marco  VIAFID ORCID Logo  ; Polizio Angelo; Lombardi, Francesco; Junior, Spoleto Antonio  VIAFID ORCID Logo 
First page
195
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277080
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212133855
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.