Full text

Turn on search term navigation

© 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML’s range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.

Details

Title
AMD-FV: Adaptive margin loss and dual path network+ for deep face verification
Author
Zeeshan Ahmed Khan; Ahmed, Waqar  VIAFID ORCID Logo  ; Liatsis, Panos  VIAFID ORCID Logo 
First page
e0324485
Section
Research Article
Publication year
2025
Publication date
May 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3213205289
Copyright
© 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.