Abstract

Optical photons play unique role in transmitting information over long distances. Photonic links by the optical fiber networks compose the backbone of today’s global internet. Such fiber optics can also provide the most cost-effective quantum channels to distribute quantum information across distant stationary nodes in future large-scale quantum networks. This prospect motivates the recent emerging efforts in developing microwave-optical quantum transduction technology to interconnect microwave quantum processors. Various frequency conversion approaches are investigated to efficiently bridge the enormous electromagnetic frequency gap while preserving quantum coherence. Nonetheless, high-fidelity entanglement generation between remote quantum processing units has remained out of reach to date. Here, we summarize the state-of-the-art progresses in quantum transducer engineering and provide the perspectives on the key challenges and opportunities toward optically heralded quantum entanglement distributions.

Details

Title
Building photonic links for microwave quantum processors
Author
Zhao, Han 1 

 Department of Physics, 6243University of Central Florida, Orlando, FL, 32816, USA 
Pages
1895-1906
Publication year
2025
Publication date
2025
Publisher
Walter de Gruyter GmbH
ISSN
21928606
e-ISSN
21928614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3215257937
Copyright
© 2025. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.