It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Largemouth bass (Micropterus salmoides, LMB) is an economic fish in China, which has developed into many different cultured populations in the past decades. These populations exhibit different growth rates, morphological traits, stress resistance, and genetic diversity. Analyzing genetic diversity and molecular identification of these populations is crucial for conserving and utilizing germplasm resources, as well as for breeding new varieties.
Result
In this study, ten distinct LMB populations from China were collected and examined using fluorescence-labeled microsatellite markers. A total of 53 alleles were identified using seven microsatellite primer pairs, with allele counts ranging from 5 to 11 and an average of 7.571. The observed heterozygosity among the ten LMB populations varied from 0.210 to 0.967, while expected heterozygosity ranged from 0.204 to 0.651, and the polymorphism information content was between 0.175 and 0.597. Genetic distance varied from 0.019 to 0.457, the genetic differentiation index ranged from 0.013 to 0.258, and the number of effective migrants (Nm) was between 0.719 and 18.981. The genetic structure analysis indicated that the ten LMB populations could be classified into two or four groups. The analysis of molecular variance (AMOVA) revealed that 83.77% of genetic variation was found within individuals, with only 16.23% attributed to differences among populations. Through construction of DNA fingerprinting, we discovered unique fragments at several loci were detected in the populations such as the reintroduced Northern LMB population, “Youlu No.3” population, and the hybrid populations. Additionally, we also created digital DNA fingerprint maps of these LMB populations. Through analysis the digital DNA fingerprints from four candidate LMB populations, three known populations corresponded with the populations collected in this study. These results indicated high identification efficiencies of the digital DNA fingerprinting created in this study.
Conclusion
We established a method to distinguish 10 different LMB populations in China, which will assist in identification, traceability management, protection, and intellectual property rights of LMB in the future.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer