It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Despite decades of efforts to find successful treatment approaches, cachexia remains a major unmet medical need. This condition, that affects patients with diverse underlying conditions, is characterized by severe muscle loss and is associated with reduced quality of life and limited survival. Search for underlying mechanisms that may guide cachexia treatment has mainly evolved around potential atrophy-inducing roles of inflammatory mediators, and in cancer patients, tumor-derived factors. Recently, a new paradigm emerged as it is becoming evident that specific immune cells inhabit atrophic muscle tissue. Arginase 1 (Arg1) expression is characteristic of these immune cells. Studies of potential contributions of these immune cells to loss of muscle mass and function is in its infancy, and the contribution of ARG1 to these processes remains elusive.
Methods
Analyses of RNA sequencing data from murine cachexia models and comprehensive, unbiased open approach proteomics analyses of skeletal myotubes was performed. In vitro techniques were employed to evaluate mitochondrial function and capacity in skeletal muscle cells and cardiomyocytes. Functional bioassays were used to measure autophagy activity. ARG1 level in patients’ plasma was evaluated using ELISA, and the association between ARG1 level and patient survival, across multiple types of cancer, was examined using the online database Kaplan-Meier plotter.
Results
In line with arginine-degrading activity of ARG1, we found signs of arginine restriction in atrophic muscles. In response to arginine restriction, mitochondrial functions and ATP generation was severely compromised in both skeletal muscle cells and in cardiomyocytes. In skeletal muscle cells, arginine restriction enhanced the expression of autophagic proteins, suggesting autophagic degradation of cellular content. Reduction in mitochondria marker TIMM23 supports selective autophagic degradation of mitochondria (mitophagy). In arginine starved cardiomyocytes, mitochondrial dysfunction is accompanied by both increased bulk autophagy and mitophagy. In cancer patients, we found an association between ARG1 expression and accelerated weight loss and reduced survival, further supporting a role of ARG1-producing cells in cachexia pathogenesis.
Conclusion
Together, our findings point to a mechanism for cachexia which depends on expansion of ARG1-expressing myeloid cells, local restriction of arginine, loss of mitochondrial capacity and induced catabolism in skeletal muscle cells and in the heart.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer