Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The PD-L1/PD-1 signaling axis is a pivotal regulator of T-cell activity and a key mechanism by which tumors evade immune surveillance. Inhibiting this pathway has resulted in significant anti-tumor responses, establishing immune checkpoint blockade (ICB) as a crucial component of modern cancer therapy. However, many patients with high PD-L1 expression do not respond to PD-1/PD-L1 blockade, underscoring the necessity for a deeper investigation into the mechanisms underlying this resistance. Recent studies have identified DRG2 as a critical modulator of anti-PD-1 therapeutic efficacy. While DRG2 depletion enhances IFN-γ signaling and increases the overall PD-L1 levels, it disrupts the recycling of endosomal PD-L1, resulting in reduced surface expression and impaired PD-1 interaction, ultimately compromising therapeutic outcomes. Furthermore, TRAPPC4, HIP1R, and CMTM6 help stabilize PD-L1 by preventing lysosome degradation. When depleted, these proteins have been shown to boost the body’s immune response against tumors. Research into the complex regulatory mechanisms of PD-L1 suggests that targeting DRG2, TRAPPC4, HIP1R, and CMTM6 could enhance the effectiveness of PD-1/PD-L1 blockade therapies. This strategy could create exciting new possibilities for cancer immunotherapy and improve patient outcomes.

Details

Title
Regulatory Mechanisms and Therapeutic Targeting of PD-L1 Trafficking and Stability in Cancer Immunotherapy
Author
Muralidharan, Mani 1   VIAFID ORCID Logo  ; Park, Jeong Woo 2 ; Martin Thomas F. J. 1   VIAFID ORCID Logo 

 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 
 Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea; [email protected] 
First page
1747
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217720023
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.